(10分)如图①,将两块全等的三角板拼在一起,其中△ABC的边BC在直线l上,AC⊥BC且AC = BC;△EFP的边FP也在直线l上,边EF与边AC重合,EF⊥FP且EF = FP。
(1)在图①中,请你通过观察、测量,猜想并写出AB与AP所满足的数量关系和位置关系;
(2)将三角板△EFP沿直线l向左平移到图②的位置时,EP交AC于点Q,连接AP、BQ。猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;
(3)将三角板△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ。你认为(2)中猜想的BQ与AP所满足的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由。
(12')如图,某水库拦水坝的迎水坡AD的坡度i=3:7,坝顶宽8米,坝高6米, cosB=,求:
(1)背水坡BC的长。
(2)坝底宽AB。
(3)水坝截面的面积S。
如图,在△ABC中,∠A=30°,∠B=45°,AC=2,求△ABC的周长和面积。(12')
计算。(10')
(1)sin30°-cos45°+
×
-tan
45°
(2)2sin30°·tan30°+cos60°·tan60°
在Rt△ABC中,∠C=90°,D,E分别为CB,CA延长线上的点,BE与AD的交点为P.
(1)若BD=AC,AE=CD,在图1中画出符合题意的图形,并直接写出∠APE的度数;
(2)若,
,求∠APE的度数.
如图1,平面直角坐标系xOy中,A
,B
.将△OAB绕点O顺时针旋转a角(0°<a<90°)得到△OCD(O,A,B的对应点分别为O,C,D),将△OAB沿
轴负方向平移m个单位得到△EFG(m>0,O,A,B的
对应点分别为E,F,G),a,m的值恰使点C,D,F落在同一反比例函数
(k≠0)的图象上.
(1)∠AOB="" °,a="" °;
(2)求经过点A,B,F的抛物线的解析式;
(3)若(2)中抛物线的顶点为M,抛物线与直线EF的另一个交点为H,抛物线上的点P满足以P,M,F,A为顶点的四边形的面积与四边形MFAH的面积相等(点P不与点H重合),请直接写出满足条件的点P的个数,并求位于直线EF上方的点P的坐标.