游客
题文

(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?
(成本=进价×销售量)

科目 数学   题型 解答题   难度 中等
知识点: 一元二次方程的最值
登录免费查看答案和解析
相关试题

深圳电视塔位于深圳海拔640米高的小梧桐山顶,如图,从位于电视塔上的观测点C测得两建筑物底部A、B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A, B之间的距离(结果保留根号)

2015年5月,深圳市某中学举行了“中国梦•校园好少年”演讲比赛活动,根据学生的
成绩划分为A,B,C,D四个等级,丙绘制了不完整的两种统计图.

根据图中提供的信息,回答下列问题:
(1)参加演讲比赛的学生共有人,并把条形图补充完整;
(2)扇形统计图中,m=,n=;C等级对应扇形的圆心角为度;
(3)学校欲从A等级的学生中随机选取2人,参加市举办的演讲比赛,请列表或画树状图,求A等级的小明参加市比赛的概率.

先化简(,然后从范围内选取一个合适的整数作为的值代入求值.

已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线的“完美三角形”的斜边长的数量关系是
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.

如图,△ABC中,AB=AC,点P是三角形右外一点,且∠APB=∠ABC.

(1)如图1,若∠BAC=60°,点P恰巧在∠ABC的平分线上,PA=2,求PB的长;
(2)如图2,若∠BAC=60°,探究PA,PB,PC的数量关系,并证明;
(3)如图3,若∠BAC=120°,请直接写出PA,PB,PC的数量关系.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号