游客
题文

有一个不透明口袋,装有分别标有数字1,2,3,4的4个小球(小球除数字不同外,其余都相同),另有3张背面完全一样、正面分别写有数字1,2,3的卡片.小敏从口袋中任意摸出一个小球,小颖从这3张背面朝上的卡片中任意摸出一张,然后计算小球和卡片上的两个数的积.
(1)请你用列表或画树状图的方法,求摸出的这两个数的积为6的概率;
(2)小敏和小颖做游戏,她们约定:若这两个数的积为奇数,小敏赢;否则,小颖赢.你认为该游戏公平吗?为什么?如果不公平,请你修改游戏规则,使游戏公平.

科目 数学   题型 解答题   难度 中等
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

(本题8分) 如图,AD、BC是⊙O的两条弦,且AD=BC,求证:AB=CD。

(本题8分) 已知:y=y1+y2,y1与x2成正比例,y2与x成反比例,且x=1时,y=3;x=-1时,y=1. 求x=时,y的值.

(本题8分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2.
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标.
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

(本题6分)一只不透明的口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为
(1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?

(本题12分)如图,在正方形ABCD中,E为BC上一点,且BE=2CE;F为AB上一动点,BF=nAF,

(1)若n=1,则==
(2)若n=2,求证:8AP=3PE
(3)当n=_____时,AE⊥DF(直接填出结果)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号