(本题6分)一只不透明的口袋中放着若干个黄球和绿球,这两种球除了颜色之外没有其它任何区别,袋中的球已经搅匀,从口袋中取出一个球取出黄球的概率为。
(1)取出绿球的概率是多少?
(2)如果袋中的黄球有12个,那么袋中的绿球有多少个?
在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC、BC为边,在AB同侧作等边△ACE和△BCD,连结AD、BE交于点P.
(1)如图1,当点C在线段AB上移动时,线段AD 与BE的数量关系: .
(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.
(3)如图3,在(2)的条件下,以AB为边在AB另一侧作等边三角形△ABF,连结AD、BE和CF交于点P,求证:PB+PC+PA=BE.
已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,
(1)如图①,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.
(2)如图②,若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.
如图,△ABC是等边三角形, AE=CD,AD、BE相交于点P,BQ⊥AD于点Q.
(1)试说明△ABE≌△CAD.
(2)求∠BPQ的度数.
(3)若PQ=3,PE=1, 则AD的长为 .
如图,BD平分∠MBN,A、C分别为BM、BN上的点,且BC>BA,E为BD上的一点,AE=CE,求证:∠BAE+∠BCE=180°.
如图,C是线段AB的中点,CD∥BE,且CD=BE,求证:AD=CE.