游客
题文

(本小题满分12分)
已知是R上的奇函数,其图像关于直线对称,且在区间上是单调函数,求的值。

科目 数学   题型 解答题   难度 中等
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

(本题满分15分) 如图,椭圆C: x2+3y2=3b2(b>0).
(Ⅰ) 求椭圆C的离心率;
(Ⅱ) 若b=1,AB是椭圆C上两点,且| AB | =,求△AOB面积的最大值.

(本题满分15分)四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G,F分别是线段CE,PB上的动点,且满足=λ∈(0,1).

(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求λ的值,使得二面角F-CD-G的平面角的正切值为

(本题满分14分) 设等差数列{an}的首项a1a,前n项和为Sn
(Ⅰ) 若S1S2S4成等比数列,求数列{an}的通项公式;
(Ⅱ) 证明:n∈N*, SnSn1Sn2不构成等比数列.

(本题满分14分) 在△ABC中,角ABC所对的边分别为abc,已知
tan (AB)=2.(Ⅰ) 求sin C的值;(Ⅱ) 当a=1,c时,求b的值.

(本题满分15分) 设抛物线C1x 2=4 y的焦点为F,曲线C2与C1关于原点对称.
(Ⅰ) 求曲线C2的方程;
(Ⅱ) 曲线C2上是否存在一点P(异于原点),过点P作C1的两条切线PAPB,切点AB,满足| AB |是 | FA | 与 | FB | 的等差中项?若存在,求出点P的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号