如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
(本小题满分8分)
学习了统计知识后,小明就本班同学的上学方式进行了一次调查统计.图(1)和图(2)是他通过采集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)求该班共有多少名学生?
(2)在图(1)中,将表示“步行”的部分补充完整;
(3)在扇形统计图中,计算出“骑车”部分所对应的圆心角的度数;
(4)如果全年级共600名同学,请你估算全年级步行上学的学生人数?
用适当的方法解下列方程: (本题满分8分,每小题2分)(1)x2="49"
(3)2x2+4x-3=0(公式法)
(4)(x+8)(x+1)=-12
(本小题满分8分)
已知在平面直角坐标系中的位置如图所示.
(1)分别写出图中点
的坐标;
(2)画出
绕点A按顺时针方向旋转
;
(3)求点C旋转到点C
所经过的路线长(结果保留
).
先化简,再求值:,其中
;
已知直线(
<0)分别交
轴、
轴于A、B两点,线段OA上有一动点P由原点O向点A运动,速度为每秒1个单位长度,过点P作
轴的垂线交直线AB于点C,设运动时间为
秒.
(1)当时,线段OA上另有一动点Q由点A向点O运动,它与点P以相同速度同时出发,当点P到达点A时两点同时停止运动(如图1).
①直接写出=1秒时C、Q两点的坐标;
②若以Q、C、A为顶点的三角形与△AOB相似,求的值.
(2)当时,设以C为顶点的抛物线
与直线AB的另一交点为D
(如图2),①求CD的长;
②设△COD的OC边上的高为,当
为何值时,
的值最大?