游客
题文

如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).

(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A, 点N的对应点为B, 点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,求四边形BEFG的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFG是否存在邻边相等的情况,若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

为弘扬传统文化,某校开展了“传承经典文化,阅读经典名著”活动.为了解七、八年级学生(七、八年级各有600名学生)的阅读效果,该校举行了经典文化知识竞赛.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行分析,过程如下:

收集数据:

七年级:79,85,73,80,75,76,87,70,75,94,75,79,81,71,75,80,86,59,83,77.

八年级:92,74,87,82,72,81,94,83,77,83,80,81,71,81,72,77,82,80,70,41.

整理数据:

40 x 49

50 x 59

60 x 69

70 x 79

80 x 89

90 x 100

七年级

0

1

0

a

7

1

八年级

1

0

0

7

b

2

分析数据:

平均数

众数

中位数

七年级

78

75

c

八年级

78

d

80.5

应用数据:

(1)由上表填空: a =    b =    c =    d =   

(2)估计该校七、八两个年级学生在本次竞赛中成绩在90分以上的共有多少人?

(3)你认为哪个年级的学生对经典文化知识掌握的总体水平较好,请说明理由.

2019年中国北京世界园艺博览会(以下简称“世园会” ) 于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是: A .“解密世园会”、 B .“爱我家,爱园艺”、 C .“园艺小清新之旅”和 D .“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同.

(1)李欣选择线路 C .“园艺小清新之旅”的概率是多少?

(2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.

图①是放置在水平面上的台灯,图②是其侧面示意图(台灯底座高度忽略不计),其中灯臂 AC = 40 cm ,灯罩 CD = 30 cm ,灯臂与底座构成的 CAB = 60 ° CD 可以绕点 C 上下调节一定的角度.使用发现:当 CD 与水平线所成的角为 30 ° 时,台灯光线最佳.现测得点 D 到桌面的距离为 49 . 6 cm .请通过计算说明此时台灯光线是否为最佳?(参考数据: 3 1 . 73 )

已知:在 ΔABC 中, AB = AC

(1)求作: ΔABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)

(2)若 ΔABC 的外接圆的圆心 O BC 边的距离为4, BC = 6 ,则 S O =   

小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号