如图,已知是棱长为
的正方体,点
在
上,点
在
上,且
.
(1)求证:四点共面;
(2)若点在
上,
,点
在
上,
,垂足为
,求证:
平面
;
(3)用表示截面
和侧面
所成的锐二面角的大小,求
.(4分
已知质量为的物体,将该物体发射升空脱离地球,求证:物体脱离地球时所做的功为
(其中
,
分别为地球的质量和半径,
为引力常数).
如图,扇形AOB的半径为1,中心角为45°,矩形EFGH内接于扇形,求矩形对角线长的最小值.
用活塞封闭圆柱钢筒中的理想气体,气体膨胀时推动活塞.设气体体积从V0膨胀到V1,且膨胀时温度不变,求气体压力对活塞所作功.
已知圆C:内有一点P(2,2),过点P作直线l交圆C于A、B两点.
(1)当l经过圆心C时,求直线l的方程;
(2)当弦AB被点P平分时,写出直线l的方程;
(3)当直线l的倾斜角为45º时,求弦AB的长.
对,不等式
所表示的平面区域为
,把
内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成一列点:
(1)求,
(2)若(
为非零常数),问是否存在整数
,使得对任意
,
都有.