(本小题满分12分)
已知直线过椭圆
的右焦点
,抛物线:
的焦点为椭圆
的上顶点,且直线
交椭圆
于
、
两点,点
、
、
在直线
上的射影依次为点
、
、
.
(1)求椭圆的方程;
(2)若直线l交y轴于点,且
,当
变化时,探求
的值是否为定值?若是,求出
的值,否则,说明理由;
(3)连接、
,试探索当
变化时,直线
与
是否相交于定点?若是,请求出定点的坐标,并给予证明;否则,说明理由.
(本小题满分12分)
已知,
且
是
的充分条件,求
取值范围.
(本大题满分14分)
设函数上两点
,若
,且P点的横坐标为
.
(1)求P点的纵坐标;
(2)若求
;
(3)记为数列
的前n项和,若
对一切
都成立,试求a的取值范围.
(本大题满分13分)
已知函数在
处取得极值
(1)求b与a的关系;
(2)设函数,如果
在区间(
0,1)上存在极小值,求实数a的取值范围
(本大题满分12分)
某公司预计全年分批购入每台价值为2000元的电视机共3600台,每批都购入x台
,且每批均需付运费400元,储存购入的电视机全年所付保管费与每批购入电视机的总价值(不含运费)成正比。若每批购入400台,则全年需用去运费和保管费43600元。现在全年只有24000元资金用于支付运费和保管费,请问能否恰
当安排每批进货的数量,使资金够用?写出你的结论并说明理由
(本大题满分12分)中角A的对边长等于2,向量
向量
.
(1)当取最大值时,求角A的大小;
(2)在(1)条件下,求面积的最大值.