游客
题文

某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖4节车厢,一日能来回16次,如果每次拖7节车厢,则每日能来回10次.若每日来回的次数是车头每次拖挂车厢节数的一次函数,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.

(1)求出该几何体的体积;
(2)若的中点,求证:∥平面
(3)求证:平面⊥平面.

如图,在直角梯形中,为线段的中点,将沿折起,使平面⊥平面,得到几何体.

(1)若分别为线段的中点,求证:∥平面
(2)求证:⊥平面
(3)的值.

设函数f(x)=cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为.
(1)求ω的值;
(2)如果f(x)在区间上的最小值为,求a的值.

已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.

已知某海滨浴场的海浪高达y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据.

t(时)
0
3
6
9
12
15
18
21
24
y(米)
1.5
1.0
0.5
1.0
1.5
1.0
0.5
0.99
1.5

经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多长时间可供冲浪者进行运动?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号