必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱
上的一点,
.
(1)当时,求直线AP与平面BDD1B1所成角的度数;
(2)在线段上是否存在一个定点
,使得对任意的m,
⊥AP,并证明你的结论.
已知公差不为0的等差数列
的首项
为
(
),且
成等比数列
(Ⅰ)求数列 的通项公式
(Ⅱ)对 ,试比较 与 的大小.
已知函数
的部分图像,如图所示,
分别为该图像的最高点和最低点,点
的坐标为
.
(Ⅰ)求
的最小正周期及
的值;
(Ⅱ)若点 的坐标为 ,
已知数列
与
满足:
, 且
.
(Ⅰ)求
的值;
(Ⅱ)设
,证明:
是等比数列;
(Ⅲ)设
,证明:
.
已知
,函数
.(
的图像连续不断)
(Ⅰ)求 的单调区间;
(Ⅱ)当 时,证明:存在 ,使 ;
(Ⅲ)若存在均属于区间 的 ,且 ,使 ,证明 .
在平面直角坐标系
中,点
为动点,
分别为椭圆
的左右焦点.已知△
为等腰三角形.
(Ⅰ)求椭圆的离心率
;
(Ⅱ)设直线
与椭圆相交于
两点,
是直线
上的点,满足
,求点
的轨迹方程.