(本题12分)设函数的定义域为A, 函数
(其中
)的定义域为B.
(1) 求集合A和B;
(2) 设全集,当a=0时,求
;
(3) 若, 求实数
的取值范围.
已知正项数列的首项
,前
项和
满足
.
(Ⅰ)求证:为等差数列,并求数列
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,不等式
恒成立,求实数
的取值范围.
已知函数.
(Ⅰ)若方程在
上有解,求
的取值范围;
(Ⅱ)在中,
分别是A,B,C所对的边,若
,且
,
,求
的最小值.
在极坐标系中,直线
的极坐标方程为
是
上任意一点,点P在射线OM上,且满足
,记点P的轨迹为
。
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)求曲线上的点到直线
距离的最大值。
如图,AB是圆O的直径,C,D是圆O上两点,AC与BD相交于点E,GC,GD是圆O的切线,点F在DG的延长线上,且。求证:
(Ⅰ)D、E、C、F四点共圆;(Ⅱ)
已知在
处取得极值。
(Ⅰ)证明:;
(Ⅱ)是否存在实数,使得对任意
?若存在,求
的所有值;若不存在,说明理由。