(本小题满分10分)
某公司生产一种电子仪器的固定成本为20 000元,每生产一台仪器需要增加投入100元,已知总收益满足函数:,其中
是仪器的月产量.
(1)将利润元表示为月产量
台的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润是多少?(总收益=总成本+利润)
(1)
(2)
已知函数。利用函数
构造一个数列
,方法如下:对于定义域中给定的
,令
,…
如果取定义域中任一值作为,都可以用上述方法构造出一个无穷数列
。
(1)求实数a的值;
(2)若,求
的值;
(3)设,试问:是否存在n使得
成立,若存在,试确定n及相应的
的值;若不存在,请说明理由。
已知数列{an}中,a1=,an+1=
(n∈N*).
(1)求证:数列{}是等差数列,并求{an}的通项公式;
(2)设bn+an=l(n∈N*),S=b1b2+b2b3+…+bnbn+1,试比较an与8Sn的大小.
已知向量,
,
。
(1)求的值;
(2)若且
,求
的值。
在△ABC中,内角A,B,C的对边分别为a,b,c,若b=1,c=.
(Ⅰ)求角C的取值范围;
(Ⅱ)求4sinCcos(C)的最小值.