(本小题满分12分)某公司将进货单价为8元一个的商品按10元一个出售,每天可以卖出100个,若这种商品的售价每个上涨1元,则销售量就减少10个.(1)求售价为13元时每天的销售利润;(2)求售价定为多少元时,每天的销售利润最大,并求最大利润.
数列的前项和为,且是和的等差中项,等差数列满足 (1)求数列、的通项公式 (2)设=,求数列的前项和.
已知向量向量记 (1)求函数的单调递增区间; (2)若,求函数的值域.
平面直角坐标系中,为原点,射线与轴正半轴重合,射线是第一象限角平分线.在上有点列,,在上有点列,,.已知,,. (1)求点的坐标; (2)求的坐标; (3)求面积的最大值,并说明理由.
已知数列的前项和为,. (1)求证:数列是等比数列; (2)若,求实数的取值范围.
已知直角坐标平面中,为坐标原点,. (1)求的大小(结果用反三角函数值表示); (2)设点为轴上一点,求的最大值及取得最大值时点的坐标.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号