数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
(1)求数列、
的通项公式
(2)设=
,求数列
的前
项和
.
已知函数(
为常数).
(1)当时,求
的单调递减区间;
(2)若,且对任意的
,
恒成立,求实数
的取值范围.
已知椭圆的中心在坐标原点,右准线为
,离心率为
.若直线
与椭圆
交于不同的两点
、
,以线段
为直径作圆
.
(1)求椭圆的标准方程;
(2)若圆与
轴相切,求圆
被直线
截得的线段长.
如图,四棱锥的底面为平行四边形,
平面
,
为
中点.
(1)求证:平面
;
(2)若,求证:
平面
.
在锐角中,
、
、
所对的边分别为
、
、
.已知向量
,
,且
.
(1)求角的大小;
(2)若,
,求
的面积.
将编号为1,2,3,4的四个小球,分别放入编号为1,2,3,4的四个盒子,每个盒子中有且仅有一个小球.若小球的编号与盒子的编号相同,得1分,否则得0分.记为四个小球得分总和.
(1)求时的概率;
(2)求的概率分布及数学期望.