据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
已知正项数列的前
项和为
,
是
与
的等比中项.
(Ⅰ)若,且
,求数列
的通项公式;
(Ⅱ)在(Ⅰ)的条件下,若,求数列
的前
项和
.
已知函数.
(Ⅰ)当时,求函数
的定义域;
(2)若关于的不等式
的解集是
,求
的取值范围.
知椭圆的离心率为
,椭圆短轴的一个端点与两个焦点构成的三角形的面积为
,直线l的方程为:
(Ⅰ)求椭圆的方程;
(Ⅱ)已知直线l与椭圆相交于
、
两点
①若线段中点的横坐标为
,求斜率
的值;
②已知点,求证:
为定值
如图,F1,F2分别是椭圆C:+
=1(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°
(1)求椭圆C的离心率;
(2)已知△AF1B的面积为40,求a,b的值
设函数f(x)=x|x-a|+b,求证:f(x)为奇函数的充要条件是a2+b2=0.