已知函数(∈R且),.(Ⅰ)若,且函数的值域为[0, +),求的解析式;(Ⅱ)在(Ⅰ)的条件下,当x∈[-2 , 2 ]时,是单调函数,求实数k的取值范围;(Ⅲ)设,, 且是偶函数,判断能否大于零?
设平面向量, (1)证明; (2)当,求.
已知,且,求: (1)的值; (2)的值.
(本小题共13分) 已知每项均是正整数的数列:,其中等于的项有个, 设,. (Ⅰ)设数列,求; (Ⅱ)若数列满足,求函数的最小值.
(本小题共14分) 已知椭圆经过点其离心率为. (Ⅰ)求椭圆的方程; (Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.
(本小题共13分) 已知函数, (Ⅰ)若,求函数的极值; (Ⅱ)设函数,求函数的单调区间; (Ⅲ)若在()上存在一点,使得成立,求的取值范围
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号