(本小题满分12分)
已知函数f(x)=x-ln(x+a).(a是常数)
(I)求函数f(x)的单调区间;
(II) 当在x=1处取得极值时,若关于x的方程f(x)+2x=x2+b在[,2]上恰有两个不相等的实数根,求实数b的取值范围;
(III)求证:当时
.
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(2)求这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
双曲线M的中心在原点,并以椭圆的焦点为焦点,以抛物线
的准线为右准线.
(Ⅰ)求双曲线M的方程;
(Ⅱ)设直线:
与双曲线M相交于A、B两点,O是原点.
① 当为何值时,使得
?
② 是否存在这样的实数,使A、B两点关于直线
对称?若存在,求出
的值;若不存在,说明理由.
如图,在四棱锥中,底面
是正方形,
底面
,
, 点
是
的中点,
,且交
于点
.
(I)求证:平面
;
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面
.
已知三次函数在
和
时取极值,且
.
(Ⅰ) 求函数的表达式;
(Ⅱ)求函数的单调区间和极值;
(Ⅲ)若函数在区间
上的值域为
,试求
、n应满足的条件。
设是平面上的两个向量,且
互相垂直.
(1)求λ的值;
(2)若求
的值.