游客
题文

(本小题满分12分)
已知抛物线,焦点为F,顶点为O,点P在抛物线上移动,Q是OP的中点,M是FQ的中点,求点M的轨迹方程.

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。
(1) 求双曲线C2的方程;
(2) 若直线l与椭圆C1及双曲线C2恒有两个不同的交点,且lC2的两个交点AB满足(其中O为原点),求k的取值范围。

中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且OM⊥ON.求椭圆的方程。

椭圆经过点,对称轴为坐标轴,焦点轴上,离心率
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程。

若数列满足前n项之和
求:(1)bn
(2) 的前n项和Tn

已知数列的首项为=3,通项与前n项和之间满足2=·n≥2)。
(1)求证:是等差数列,并求公差;
(2)求数列的通项公式。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号