中心在坐标原点,焦点在x轴上的椭圆,它的离心率为,与直线x+y-1=0相交于两点M、N,且OM⊥ON.求椭圆的方程。
一个圆柱形圆木的底面半径为1m,长为10m,将此圆木沿轴所在的平面剖成两个部分.现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形(如图所示,其中O为圆心,
在半圆上),设
,木梁的体积为V(单位:m3),表面积为S(单位:m2).
(1)求V关于θ的函数表达式;
(2)求的值,使体积V最大;
(3)问当木梁的体积V最大时,其表面积S是否也最大?请说明理由.
如图,在三棱柱中,侧面
为菱形,且
,
,
是
的中点.
(1)求证:平面平面
;
(2)求证:∥平面
.
设函数.
(1)求的最小正周期和值域;
(2)在锐角△中,角
的对边分别为
,若
且
,
,求
和
.
设,
且
,其中当
为偶数时,
;当
为奇数时,
.
(1)证明:当,
时,
;
(2)记,求
的值.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.