游客
题文

(本小题满分12分)已知抛物线,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为
(1)当时,求椭圆的标准方程;
(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.

科目 数学   题型 解答题   难度 较易
知识点: 参数方程
登录免费查看答案和解析
相关试题

在4月份(按30天计算),有一新款服装投入某商场销售,4月1日该款服装仅销售出10件,第二天售出35件,第三天销售60件,然后,每天售出的件数分别递增25件,直到4月12日销售量达到最大,以后每天销售的件数分别递减15件.
(Ⅰ)问到月底该服装共销售出几件.
(Ⅱ)按规律,当该商场销售此服装的日销售量达到150件以上时,社会上就流行,问该款服装在社会上流行是否超过14天?并说明理由.

在平面直角坐标系中,抛物线C的顶点在原点,经过点
A(2,2),其焦点F在轴上.

(Ⅰ)求抛物线C的标准方程;
(Ⅱ)求过点F,且与直线OA垂直的直线的方程.

中,
(Ⅰ)求AB的值.
(Ⅱ)求的值.

设命题:函数-2-1在区间(-∞,3]上单调递减;命题:函数的定义域是.如果命题为真命题,为假命题,求取值范围.

(本小题14分)
已知,函数
(Ⅰ)当=2时,写出函数的单调递增区间;
(Ⅱ)当>2时,求函数在区间上的最小值;
(Ⅲ)设,函数上既有最大值又有最小值,请分别求出的取值范围(用表示)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号