在4月份(按30天计算),有一新款服装投入某商场销售,4月1日该款服装仅销售出10件,第二天售出35件,第三天销售60件,然后,每天售出的件数分别递增25件,直到4月12日销售量达到最大,以后每天销售的件数分别递减15件.(Ⅰ)问到月底该服装共销售出几件.(Ⅱ)按规律,当该商场销售此服装的日销售量达到150件以上时,社会上就流行,问该款服装在社会上流行是否超过14天?并说明理由.
若求证:.
设抛物线的焦点为,点,线段的中点在抛物线上.设动直线与抛物线相切于点,且与抛物线的准线相交于点,以为直径的圆记为圆. (1)求的值; (2)证明:圆与轴必有公共点; (3)在坐标平面上是否存在定点,使得圆恒过点?若存在,求出的坐标;若不存在,说明理由.
已知为公差不为零的等差数列,首项,的部分项、、…、恰为等比数列,且,,. (1)求数列的通项公式(用表示); (2)若数列的前项和为,求.
已知函数. (1)当时,求函数单调区间; (2)若函数在区间[1,2]上的最小值为,求的值.
如图所示的多面体中, 是菱形,是矩形,面,. (1)求证:平; (2)若,求四棱锥的体积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号