.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求
的分布列及数学期望
.
(本小题满分10分)已知函数,
在
处取得极小值
。求a+b的值
选修4—5:不等式选讲
已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)≤6的解集为{x|-2≤x≤3},求实数a的值;
(2)在(1)的条件下,若存在实数n使f(n)≤m-f(-n)成立,求实数m的取值范围.
选修4—4:坐标系与参数方程
以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的单位长度.已知直线经过点P(1,1),倾斜角
.
(1)写出直线的参数方程;
(2)设与圆
相交于两点A、B,求点P到A、B两点的距离之积.
选修4—1:几何证明选讲
D、E分别为△ABC的边AB、AC上的点,且不与△ABC的顶点重合。已知AE的长为,AC的长为
,AD、AB的长是关于
的方程
的两个根。
(1)证明:C、B、D、E四点共圆;
(2)若∠A=90°,且,求C、B、D、E所在圆的半径。
已知函数.
(1)当且
,时,试用含
的式子表示
,并讨论
的单调区间;
(2)若有零点,
,且对函数定义域内一切满足|x|≥2的实数x有
≥0.
①求的表达式;
②当时,求函数
的图象与函数
的图象的交点坐标.