如图一,平面四边形关于直线
对称,
.
把沿
折起(如图二),使二面角
的余弦值等于
.对于图二,
(Ⅰ)求;
(Ⅱ)证明:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.
已知函数.
(I)求的单调区间;
(II) 若在
处取得极值,直线
与
的图象有三个不同的交点,求
的取值范围。
已知数列中,
(
为常数);
是
的前
项和,且
是
与
的等差中项。
(I)求;
(II)猜想的表达式,并用数学归纳法加以证明。
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格
(元/吨)之间的关系式为:
,且生产
吨的成本为
(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(利润=收入─成本)
已知函数,且
.
(I)求函数的解析式;
(II)求函数的单调区间和极值.
(本小题满分12分)
已知点列、
、…、
(n∈N)顺次为一次函数
图像上的点,点列
、
、…、
(n∈N)顺次为x轴正半轴上的点,其中
(0<a<1),对于任意n∈N,点
、
、
构成一个顶角的顶点为
的等腰三角形。
(1)数列的通项公式,并证明
是等差数列;
(2)证明为常数,并求出数列
的通项公式;
(3)上述等腰三角形中,是否存在直角三角形?若有,求出此时a值;若不存在,请说明理由。