已知函数,且
.
(I)求函数的解析式;
(II)求函数的单调区间和极值.
如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E、D,连结EC、CD.
(Ⅰ)求证:直线AB是⊙O的切线;
(Ⅱ)若tan∠CED=,⊙O的半径为3,求OA的长.
已知函数,h(x)=2alnx,
.
(1)当a∈R时,讨论函数的单调性;
(2)是否存在实数a,对任意的,且
,都有
恒成立,若存在,求出a的取值范围;若不存在,说明理由.
“地沟油”严重危害了人民群众的身体健康,某企业在政府部门的支持下,进行技术攻关,新上了一种从“食品残渣”中提炼出生物柴油的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可以近似的表示为:
且每处理一吨“食品残渣”,可得到能利用的生物柴油价值为200元,若该项目不获利,政府将补贴.
(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损;
(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?
在四棱锥中,
平面
,
是正三角形,
与
的交点
恰好是
中点,又
,
,点
在线段
上,且
.
(1)求证:;
(2)求证:平面
;
(3)求二面角的余弦值.
已知数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,求
的取值范围.