(1)计算:+(2π-1)0-
sin45°-
tan30°
(2)解方程:
(3)一个不透明的布袋里装有4个大小、质地均相同的乒乓球,每个球上面分别标有1、2、3、4,小林先从布袋中随机抽取一个乒乓球(不放回去),再从剩下的3个球中随机抽取第二个乒乓球。
① 请你列出所有可能的结果;
② 求两次取得乒乓球的数字之积为奇数的概率。
已知 ,点A,B分别在射线OM,ON上运动,AB=6.
(1)如图①,若 ,取AB中点D,点A,B运动时,点D也随之运动,点A,B,D的对应点分别为A′,B′,D′,连接OD,OD′.判断OD与OD′有什么数量关系?证明你的结论;
(2)如图②,若 ,以AB为斜边在其右侧作等腰直角三角形ABC,求点O与点C的最大距离;
(3)如图③,若 ,当点A,B运动到什么位置时,△AOB的面积最大?请说明理由,并求出△AOB面积的最大值.
已知抛物线y=﹣x2+2x+3与x轴交于A,B两点(点A在点B的左侧).
(1)求点A,点B的坐标;
(2)如图,过点A的直线l:y=﹣x﹣1与抛物线的另一个交点为C,点P为抛物线对称轴上的一点,连接PA,PC,设点P的纵坐标为m,当PA=PC时,求m的值;
(3)将线段AB先向右平移1个单位长度,再向上平移5个单位长度,得到线段MN,若抛物线y=a(﹣x2+2x+3)(a≠0)与线段MN只有一个交点,请直接写出a的取值范围.
如图,在 中, ,以AC为直径作⊙O交BC于点D,过点D作 ,垂足为E,延长BA交⊙O于点F.
(1)求证:DE是⊙O的切线;
(2)若 , ,求 的半径.
打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
综合与实践
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动.
【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
芒果树叶的长宽比 |
3.8 |
3.7 |
3.5 |
3.4 |
3.8 |
4.0 |
3.6 |
4.0 |
3.6 |
4.0 |
荔枝树叶的长宽比 |
2.0 |
2.0 |
2.0 |
2.4 |
1.8 |
1.9 |
1.8 |
2.0 |
1.3 |
1.9 |
【实践探究】分析数据如下:
平均数 |
中位数 |
众数 |
方差 |
|
芒果树叶的长宽比 |
3.74 |
m |
4.0 |
0.0424 |
荔枝树叶的长宽比 |
1.91 |
1.95 |
n |
0.0669 |
【问题解决】
(1)上述表格中:m= ,n= ;
(2)①A同学说:“从树叶的长宽比的方差来看,我认为芒果树叶的形状差别大.”
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是 (填序号);
(3)现有一片长11cm,宽5.6cm的树叶,请判断这片树叶更可能来自于芒果、荔枝中的哪种树?并给出你的理由.