如图,在平面直角坐标系中,已知点B的坐标是(-1,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,写出点P的坐标(不要求写解题过程).
已知求
的值。
如图,点P在∠AOB内,M、N分别是点P关于AO、BO的对称点,MN分别交AO,BO于点E、F,若△PEF的周长等于20㎝,求MN的长。
如图,AE=CF,AD∥BC,AD=CB。求证:△ADF≌△CBE
用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成,硬纸板以如图两种方法裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
A方法 B方法
现有38张硬纸板,裁剪时x张用A方法,其余用B方法。
(1)、用x的代数式分别表示裁剪出的侧面和底面的个数;
(2)、若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
已知:AB∥CD,∠B +∠D=,判断直线BC与ED的位置关系并请说明理由.