下面是小马虎解的一道题
题目:在同一平面上,若∠BOA=70°,∠BOC=15°求∠AOC的度数.
解:根据题意可画出图
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°
∴∠AOC=55°
若你是老师,会判小马虎满分吗?
若会,说明理由.
若不会,请将小马虎的的错误指出,并给出你认为正确的解法.
如图1,抛物线 与 轴交于 , 两点,与 轴交于点 , ,矩形 的边 ,延长 交抛物线于点 .
(1)求抛物线的解析式;
(2)如图2,点 是直线 上方抛物线上的一个动点,过点 作 轴的平行线交直线 于点 ,作 ,垂足为 .设 的长为 ,点 的横坐标为 ,求 与 的函数关系式(不必写出 的取值范围),并求出 的最大值;
(3)如果点 是抛物线对称轴上的一点,抛物线上是否存在点 ,使得以 , , , 为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的点 的坐标;若不存在,请说明理由.
如图,菱形 中,对角线 , 相交于点 , , ,动点 从点 出发,沿线段 以 的速度向点 运动,同时动点 从点 出发,沿线段 以 的速度向点 运动,当其中一个动点停止运动时另一个动点也随之停止.设运动时间为 ,以点 为圆心, 长为半径的 与射线 ,线段 分别交于点 , ,连接 .
(1)求 的长(用含有 的代数式表示),并求出 的取值范围;
(2)当 为何值时,线段 与 相切?
(3)若 与线段 只有一个公共点,求 的取值范围.
【操作发现】
(1)如图1, 为等边三角形,先将三角板中的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板斜边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .
①求 的度数;
② 与 相等吗?请说明理由;
【类比探究】
(2)如图2, 为等腰直角三角形, ,先将三角板的 角与 重合,再将三角板绕点 按顺时针方向旋转(旋转角大于 且小于 ,旋转后三角板的一直角边与 交于点 ,在三角板另一直角边上取一点 ,使 ,线段 上取点 ,使 ,连接 , .请直接写出探究结果:
① 的度数;
②线段 , , 之间的数量关系.
数学兴趣小组研究某型号冷柜温度的变化情况,发现该冷柜的工作过程是:当温度达到设定温度 时,制冷停止,此后冷柜中的温度开始逐渐上升,当上升到 时,制冷开始,温度开始逐渐下降,当冷柜自动制冷至 时,制冷再次停止, ,按照以上方式循环进行.
同学们记录了 内15个时间点冷柜中的温度 随时间 的变化情况,制成下表:
时间 |
|
4 |
8 |
10 |
16 |
20 |
21 |
22 |
23 |
24 |
28 |
30 |
36 |
40 |
42 |
44 |
|
温度 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1)通过分析发现,冷柜中的温度 是时间 的函数.
①当 时,写出一个符合表中数据的函数解析式 ;
②当 时,写出一个符合表中数据的函数解析式 ;
(2) 的值为 ;
(3)如图,在直角坐标系中,已描出了上表中部分数据对应的点,请描出剩余数据对应的点,并画出当 时温度 随时间 变化的函数图象.
今年,我市某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2015年单价为200元,2017年单价为162元.
(1)求2015年到2017年该品牌足球单价平均每年降低的百分率;
(2)选购期间发现该品牌足球在两个文体用品商场有不同的促销方案:
试问去哪个商场购买足球更优惠?