如图,已知抛物线经过
,
两点,顶点为
.
(1)求抛物线的解析式;
(2)将绕点
顺时针旋转90°后,点
落到点
的位置,
将抛物线沿轴平移后经过点
,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与
轴的交点为
,顶点为
,若点
在平移后的抛物线上,且满足
的面积是
面积的2倍,求点
的坐标.
(1)计算:
(2)解方程:.
已知关于x的一元二次方程x2﹣(2k+1)x+k2+k=0.
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB,AC的长是这个方程的两个实数根,第三边BC的长为5,当△ABC是等腰三角形时,求k的值.
已知关于x的方程x2﹣2(m+1)x+m2﹣3=0.
(1)当m取何值时,方程有两个不相等的实数根?
(2)设方程的两实数根分别为x1,x2,当(x1+1)(x2+1)=8时,求m的值.
如图,在Rt△ACB中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时由A、B两点出发分别沿AC、BC向点C匀速移动,它们的速度都是1米/秒,问:几秒后△PCQ的面积为Rt△ACB面积的一半?
如图,小区计划在一个长为40cm,宽为26m的矩形场地ABCD上修建三条同样宽的路,使其中两条与AB平行,另一条与AD平行,其余部分种草,若使每一块草坪的面积都为144m2,求路的宽度.