必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)
(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;
(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求
的概率分布列和数学期望.
函数
(Ⅰ)求的值域和单调递减区间;
(Ⅱ)在中角
所对的边分别是
,且
,
,
,求
的面积。
已知函数,
,其中
(Ⅰ)若函数有极值
,求实数
的值;
(Ⅱ)若函数在区间
上是增函数,求实数
的取值范围;
(Ⅲ)证明:
已知抛物线的焦点为
,点
关于坐标原点对称,以
为焦点的椭圆
,过点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设,过点
作直线
与椭圆
交于
两点,且
,若
,求
的最小值。
香港违法“占中”行动对香港的经济、政治、社会及民生造成重大损失,据香港科技大学经济系教授雷鼎鸣测算,仅香港的“占中”行动开始后一个多月的时间,保守估计造成经济损失亿港元,相等于平均每名港人承受了
万港元的损失,为了挽回经济损失,某厂家拟在新年举行大型的促销活动,经测算某产品当促销费用为
万元时,销售量
万件满足
(其中
,
为正常数).现假定生产量与销售量相等,已知生产该产品
万件还需投入成本
万元(不含促销费用),产品的销售价格定为
万元/万件.
(1)将该产品的利润万元表示为促销费用
万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大.
若数列满足
,则称数列
为“平方递推数列”.已知数列
中,
,点
在函数
的图象上,其中
为正整数.
(1)证明数列是“平方递推数列”,且数列
为等比数列;
(2)设(1)中“平方递推数列”的前项之积为
,即
,求数列
的通项及
关于
的表达式;
(3)记,求数列
的前
项和
,并求使
的
的最小值.