必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中)
(1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率;
(2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求
的概率分布列和数学期望.
(本小题满分12分)
设数列的前
项和为
已知
(I)设,证明数列
是等比数列;
(II)求数列的通项公式。
(本小题满分12分)
如图,矩形中,
,
,
为
上的点,且
.
(Ⅰ)求证:;
(Ⅱ)求证;;
(Ⅲ)求三棱锥的体积.
(本小题共12)
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.
(Ⅰ)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;
(Ⅱ)这名学生在上学路上因遇到红灯停留的总时间至多是4min的概率.
(本小题满分10分)
在△中,
所对的边分别为
,
,
.
(1)求;
(2)若,求
,
,
.
(本小题满分12分)
已知函数其中a为常数,且
.
(Ⅰ)当时,求
在
(e=2.718 28…)上的值域;
(Ⅱ)若对任意
恒成立,求实数a的取值范围.