在如图所示的几何体中,四边形ABCD为矩形,AB=2BC=4,BF=CF=AE=DE,EF=2,EF//AB,AF⊥CF。
(Ⅰ)若G为FC的中点,证明:AF//平面BDG;
(Ⅱ)求平面ABF与平面BCF夹角的余弦值。
(本小题满分12分)
数列是首项
的等比
数列,且
成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设为数列
的前
项和,求
.
(本小题满分12分)
已知件产品中有
件次品,现逐一不放回地进行检验,直到
件次品都能被确认为止(如:前
次检验到的产品均不为次品,则次品也被确认).
(Ⅰ)求检验次数为的概率;
(Ⅱ)求检验次数为的概率.
(本小题满分10分)
已知各项展开式的二项式系数之和为
.
(Ⅰ)求;(Ⅱ)求展开式中的常数项.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
从数列中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列
的一个子数列.
设数列是一个首项为
、公差为
的无穷等差数列.
(1)若,
,
成等
比数列,求其公比
.
(2)若,从数列
中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为
的无穷等比子数列,请说明理由.
(3)若,从数列
中取出第1项、第
项(设
)作为一个等比数列的第1项、第2项,试问当且仅当
为何值时,该数列为
的无穷等比子数列,请说明理由.
本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.
已知椭圆:
(
),其焦距为
,若
(
),则称椭圆
为“黄金椭圆”.
(1)求证:在黄金椭圆:
(
)中,
、
、
成等比数列.
(2)黄金椭圆:
(
)的右焦点为
,
为椭圆
上的
任意一点.是否存在过点、
的直线
,使
与
轴的交点
满足
?若存在,求直线
的斜率
;若不存在,请说明理由.
(3)在黄金椭圆中有真命题:已知黄金椭圆:
(
)的左、右
焦点分别是、
,以
、
、
、
为顶点的菱形
的内切圆过焦点
、
.
试写出“黄金双曲线”的定义;对于上述命题,在黄金双曲线中写出相关的真命题,并加以证明.