(本小题满分12分)
设函数
(Ⅰ)若且对任意实数
均有
成立,求
表达式;
(Ⅱ)在(Ⅰ)的条件下,当时,
是单调函数,
求实数的取值范围;
(Ⅲ)设,且
为偶函数,求证
已知椭圆.过点(m,0)作圆
的切线
交椭圆G于A,B两点.
(Ⅰ)求椭圆G的焦点坐标和离心率;
(Ⅱ)将表示为m的函数,并求
的最大值.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式,其中3<x<6,
为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(Ⅰ)求的值;
(Ⅱ)若该商品的成品为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
M为AB的中点
(1)求证:BC//平面PMD
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.
在中,角
所对的边分别为
已知
且
.
(Ⅰ)当时,求
的值;
(Ⅱ)若角为锐角,求
的取值范围.
已知函数
(Ⅰ)当时,求
在区间
上的最大值和最小值;
(Ⅱ)如果函数在公共定义域D上,满足
,
那么就称为
的“伴随函数”.已知函数
,
.若在区间
上,
函数是
的“伴随函数”,求
的取值范围.