游客
题文

(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.

A.选修4-1:几何证明选讲
如图,是边长为的正方形,以为圆心,为半径的圆弧与以为直径的半⊙O交于点,延长
(1)求证:的中点;(2)求线段的长.
B.选修4-2:矩阵与变换
已知矩阵A,其中,若点在矩阵A的变换下得到
(1)求实数的值;
(2)矩阵A的特征值和特征向量.
C.选修4-4:坐标系与参数方程
在极坐标系中,圆的极坐标方程为
(1)过极点的一条直线与圆相交于,A两点,且∠,求的长.
(2)求过圆上一点,且与圆相切的直线的极坐标方程;
D.选修4-5:不等式选讲

已知实数满足,求的最小值;

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

,观察下列不等式:

请你猜测满足的不等式,并用数学归纳法加以证明.

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(Ⅰ)求椭圆的方程;
(Ⅱ)若,且,求的值(点为坐标原点);
(Ⅲ)若坐标原点到直线的距离为,求面积的最大值.

设函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)当时,是否存在整数,使不等式恒成立?若存在,求整数的值;若不存在,请说明理由.
(Ⅲ)关于的方程上恰有两个相异实根,求实数的取值范围.

如图,在三棱柱中,每个侧面均为正方形,为底边的中点,为侧棱的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号