(本小题满分13分)
已知:函数(其中
)的图象与
轴的交点中,相邻两个交点之间的距离为
,且图象上一个最低点为
(1)求:的解析式;
(2)当,求:函数
的值域
为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表
患病 |
未患病 |
总计 |
|
没服用药 |
20 |
30 |
50 |
服用药 |
x |
y |
50 |
总计 |
M |
N |
100 |
设从没服用药的动物中任取两只,未患病数为X;从服用药物的动物中任取两只,未患病数为Y,工作人员曾计算过P(X=0)=P(Y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够有多大的把握认为药物有效?
(3)现在从该100头动物中,采用随机抽样方法每次抽取1头,抽后返回,抽取5次, 若每次抽取的结果是相互独立的,记被抽取的5头中为服了药还患病的数量为.,求
的期望E(
)和方差D(
).
参考公式:(其中
)
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
k |
1.323 |
2.072 |
2.706 |
3.845 |
6.635 |
7.879 |
在1,2,3,…,9这9个自然数中,任取3个数,
(1)记Y表示“任取的3个数中偶数的个数”,求随机变量Y的分布列及其期望;
(2)记X为3个数中两数相邻的组数,例如取出的数为1,2,3,则有这两组相邻的数1,2和2,3,此时X的值为2,求随机变量X的分布列及其数学期望E(X).
某班有6名班干部,其中男生4人,女生2人,任选选3人参加学校的义务劳动。
(1)求男生甲或女生乙被选中的概率
(2)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(A)和P(B︱A)。
已知函数(
),该函数所表示的曲线上的一个最高点为
,由此最高点到相邻的最低点间曲线与x轴交于点(6,0)。
(1)求函数解析式;
(2)求函数的单调区间;
(3)若,求
的值域。
已知,
,
,
.
(1)若(
为坐标原点),求
与
的夹角;
(2)若,求
的值.