为考查某种药物预防疾病的效果,进行动物试验,得到如下丢失数据的列联表:
药物效果试验列联表
|
患病 |
未患病 |
总计 |
没服用药 |
20 |
30 |
50 |
服用药 |
x |
y |
50 |
总计 |
M |
N |
100 |
设从没服用药的动物中任取两只,未患病数为X;从服用药物的动物中任取两只,未患病数为Y,工作人员曾计算过P(X=0)= P(Y=0).
(1)求出列联表中数据x,y,M,N的值;
(2)能够有多大的把握认为药物有效?
(3)现在从该100头动物中,采用随机抽样方法每次抽取1头,抽后返回,抽取5次, 若每次抽取的结果是相互独立的,记被抽取的5头中为服了药还患病的数量为.,求
的期望E(
)和方差D(
).
参考公式:(其中
)
P(K2≥k) |
0.25 |
0.15 |
0.10 |
0.05 |
0.010 |
0.005 |
k |
1.323 |
2.072 |
2.706 |
3.845 |
6.635 |
7.879 |
请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4-1:几何证明选讲
如图,是⊙O的一条切线,切点为
,
都是⊙O的割线,已知
证明:
(Ⅰ);
(Ⅱ)
(本小题满分12分)
设,
,
,根据等差数列前n项和公式知
;且
,
,
,
猜想,即
(Ⅰ)请根据以上方法推导的公式;
(Ⅱ)利用以上结论,计算的值.
(本小题满分12分)
如图,已知四棱锥的底面是正方形,
,且
,点
分别在侧棱
、
上,且
。
(Ⅰ)求证:;
(Ⅱ)若,求平面
与平面
所成二面角的余弦值.
(本小题满分12分)
已知双曲线的离心率为2,焦点到渐近线的距离等于
,过右焦点
的直线
交双曲线于、
两点,
为左焦点,
(Ⅰ)求双曲线的方程;
(Ⅱ)若的面积等于
,求直线
的方程.
(本小题满分12分)
已知函数在
和
处有极值。
(Ⅰ)求的值;
(Ⅱ)求曲线在
处的切线方程.