围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示.已知旧墙的维修费用为45元/m,新墙的造价为180元/m.设利用的旧墙的长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)(I)将y表示为x的函数;(II)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用
已知定义域为的奇函数. (1)解不等式; (2)对任意,总有,求实数的取值范围.
已知函数,. (1)当时,求函数的最小值; (2)若对任意,恒成立,试求实数的取值范围.
本题满分14分)在中,分别为的对边,已知. (1)求; (2)当,时,求的面积.
已知是递增的等差数列,. (1)求数列的通项公式; (2)若,求数列的前n项和.
已知二次函数. (Ⅰ)若,且在上单调递增,求实数的取值范围; (Ⅱ)当时,有.若对于任意的实数,存在最大的实数,使得当时,恒成立,试求用表示的表达式.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号