游客
题文

在△ABC中,∠C=90°,AC=3,BC=4,CD是斜边AB上的高,点E在斜边AB上,过点E作直线与△ABC的直角边相交于点F,设AE=x,△AEF的面积为y.
(1)求线段AD的长;
(2)若EF⊥AB,当点E在线段AB上移动时,
①求y与x的函数关系式(写出自变量x的取值范围)
②当x取何值时,y有最大值?并求其最大值;
(3)若F在直角边AC上(点F与A、C两点均不重合),点E在斜边AB上移动,试问:是否存在直线EF将△ABC的周长和面积同时平分?若存在直线EF,求出x的值;若不存在直线EF,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 三角形的五心
登录免费查看答案和解析
相关试题

如图,四边形ABCD的∠BAD=∠C=90º,AB=AD,AE⊥BC于E,旋转后能与重合

旋转中心是哪一点?
旋转了多少度?
若AE=5㎝,求四边形AECF的面积

一张圆桌旁有四个座位,A先坐在如图9所示的座位上,B.C.D三人随机坐到其他三个座位上。求A与B不相邻而坐的概率

为把产品打入国际市场,某企业决定从下面两个投资方案中选择一个进行投资生产.方案一:生产甲产品,每件产品成本为a万美元(a为常数,且3<a<8),每件产品销售价为10万美元,每年最多可生产200件;方案二:生产乙产品,每件产品成本为8万美元,每件产品销售价为18万美元,每年最多可生产120件.另外,年销售x件乙产品时需上交万美元的特别关税.在不考虑其它因素的情况下:
分别写出该企业两个投资方案的年利润与相应生产件数x(x为正整数)之间的函数关系式,并指出自变量的取值范围
分别求出这两个投资方案的最大年利润;
如果你是企业决策者,为了获得最大收益,你会选择哪个投资
方案

如图1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的对称中心,MN交AB于F,QM交AD于E.
求证:ME = MF.
如图2,若将原题中的“正方形”改为“菱形”,其他条件不变,探索线段ME与线段MF的关系,并加以证明.
如图3,若将原题中的“正方形”改为“矩形”,且AB = mBC,其他条件不变,探索线段ME与线段MF的关系,并说明理由.
根据前面的探索和图4,你能否将本题推广到一般的平行四边形情况?若能,写出推广命题;若不能,请说明理由

如图已知AB是的切线,切点为于点过点于点

求证:
的半径为4,求CD的长;
求阴影部分的面积。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号