(本小题满分13分)
如图,在三棱柱中,侧面
,
均为正方形,∠
,点
是棱
的中点.
(Ⅰ)求证:⊥平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求二面角的余弦值.
已知,函数
.
(1)当时,若
,求函数
的单调区间;
(2)若关于的不等式
在区间
上有解,求
的取值范围;
(3)已知曲线在其图象上的两点
,
(
)处的切线分别为
.若直线
与
平行,试探究点
与点
的关系,并证明你的结论.
已知抛物线的焦点为
,点
为抛物线
上的一个动点,过点
且与抛物线
相切的直线记为
.
(1)求的坐标;
(2)当点在何处时,点
到直线
的距离最小?
已知:为常数)
(1)若,求
的最小正周期;
(2)若在[
上最大值与最小值之和为3,求
的值.
如图,在四棱锥中,底面
是菱形,
,且侧面
平面
,点
是棱
的中点.
(1)求证:平面
;
(2)求证:;
(3)若,求证:平面
平面
.
在甲、乙两个盒子中分别装有编号为1,2,3,4的四个形状相同的小球,现从甲、乙两个盒子中各取出1个小球,每个小球被取出的可能性相等.
(1)求取出的两个球上的编号都为奇数的概率;
(2)求取出的两个球上的编号之和为3的倍数的概率;
(3)求取出的两个球上的编号之和大于6的概率.