(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2
(注:利润与投资单位是万元)
(Ⅰ)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式;
(Ⅱ)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).
(本小题满分13分)设集合由满足下列两个条件的数列
构成:
①②存在实数
,使
.(
为正整数)
(Ⅰ)在只有项的有限数列
,
中,其中
,
,
,
,
,
,
,
,
,
,试判断数列
,
是否为集合
的元素;
(Ⅱ)设是等差数列,
是其前
项和,
,
,证明数列
;并求出
的取值范围.
(本小题满分14分)
已知椭圆的中心在坐标原点,长轴长为
,离心率
,过右焦点
的直线
交椭圆于
,
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当直线的斜率为1时,求
的面积;
(Ⅲ)若以为邻边的平行四边形是矩形,求满足该条件的直线
的方程.
(本小题满分14分)已知函数.
(Ⅰ)若时,
取得极值,求
的值;
(Ⅱ)求在
上的最小值;
(Ⅲ)若对任意,直线
都不是曲线
的切线,求
的取值范围.
(本小题满分13分)在四棱锥中,底面
是正方形,
与
交于点
,
底面
,
为
的中点.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:;
(Ⅲ)若在线段
上是否存在点
,使
平面
?
若存在,求出的值,若不存在,请说明理由.
(本小题满分13分)函数部分图象如图所示.
(Ⅰ)求的最小正周期及解析式;
(Ⅱ)设,求函数
在区间
上的最大值和最小值.