(本小题10分)选修4—4:坐标系与参数方程
已知某圆的极坐标方程为
(I)将极坐标方程化为普通方程,并选择恰当的参数写出它的参数方程;
(II)若点在该圆上,求
的最大值和最小值.
设实部为正数的复数,满足
,且复数
在复平面上对应的点在第一、三象限的角平分线上.
(1)求复数;
(2)若为纯虚数, 求实数
的值.
已知二次函数,及函数
。
关于的不等式
的解集为
,其中
为正常数。
(1)求的值;
(2)R
如何取值时,函数
存在极值点,并求出极值点;
(3)若,且
,求证:
。
已知函数,
(1)若x=1时取得极值,求实数
的值;
(2)当时,求
在
上的最小值;
(3)若对任意,直线
都不是曲线
的切线,求实数
的取值范围。
已知函数,其中
,
.
(1)当时,求曲线
在点
处的切线方程;
(2)求的单调区间.(要写推理过程)
设函数对任意实数x 、y都有
,
(1)求的值;
(2)若,求
、
、
的值;
(3)在(2)的条件下,猜想的表达式,并用数学归纳法加以证明。