游客
题文

(本小题满分15分)如图,已知椭圆:+=1(a>b>0)的长轴AB长为4,离心率e=,O为坐标原点,过B的直线l与x轴垂直.P是椭圆上异于A、B的任意一点,PH⊥x轴,H为垂足,延长HP到点Q使得HP=PQ,连结AQ延长交直线于点M,N为的中点.
(1)求椭圆的方程;
(2)证明:Q点在以为直径的圆上;
(3)试判断直线QN与圆的位置关系.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

(本小题满分12分)如图,在四棱锥P—ABCD中,PA⊥平面ABCD,底面ABCD为梯形,BC∥AD,AB⊥AD,PA=AB=BC=1,AD=2.

(1)求三棱锥P—ACD的外接球的表面积;
(2)若M为PB的中点,问在AD上是否存在一点E,使AM∥平面PCE?若存在,求的值;若不存在,说明理由.

(本小题满分12分)某校在一次对学生在课外活动中喜欢跑步和喜欢打球的学生的抽样调查中,随机抽取了100名同学,相关数据如下表所示:


喜欢跑步
喜欢打球
总计
男生
23
32
55
女生
29
16
45
总计
52
48
100

(1)由表中数据直观分析,喜欢打球的学生是否与性别有关?
(2)用分层抽样的方法在喜欢打球的学生中随机抽取6名,男学生应该抽取几名?
(3)在上述抽取的6名学生中任取2名,求恰有1名女学生的概率.

(本小题满分12分)设数列{an}的前n项和为Sn,对任意的正整数n,都有an=4Sn+1成立.
(1)求数列{an}的通项公式;
(2)设bn=log3|an|,数列{}的前n项和为Tn, 求证:Tn

(本小题满分13分)
已知函数
(Ⅰ)求函数在点处的切线方程;
(Ⅱ)求函数单调递增区间;
(Ⅲ)若存在,使得是自然对数的底数),求实数的取值范围.

(本小题满分13分)
在平面直角坐标系中,为坐标原点,以为圆心的圆与直线相切.
(Ⅰ)求圆的方程;
(Ⅱ)若直线与圆交于两点,在圆上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号