游客
题文

在平面直角坐标系中,

①求△ABC的面积;
②在图中作△ABC关于轴的对称图形,写出的坐标。

科目 数学   题型 解答题   难度 中等
知识点: 坐标与图形变化-旋转
登录免费查看答案和解析
相关试题

如图,抛物线 y = 1 4 x 2 1 2 x + 3 4 x 轴交于 A C 两点(点 A 在点 C 的左边).直线 y = kx + b ( k 0 ) 分别交 x 轴, y 轴于 A B 两点,且除了点 A 之外,该直线与抛物线没有其它任何交点.

(1)求 A C 两点的坐标;

(2)求 k b 的值;

(3)设点 P 是抛物线上的动点,过点 P 作直线 kx + b ( k 0 ) 的垂线,垂足为 H ,交抛物线的对称轴于点 D ,求 PH + DH 的最小值.并求出此时点 P 的坐标.

如图,已知 AO Rt Δ ABC 的角平分线, ACB = 90 ° AC BC = 4 3 ,以 O 为圆心, OC 为半径的圆分别交 AO BC 于点 D E ,连接 ED 并延长交 AC 于点 F

(1)求证: AB O 的切线;

(2)求 tan CAO 的值;

(3)求 AD CF 的值.

如图,直线 y = x + 2 与反比例函数 y = k x ( k 0 ) 的图象交于 A ( 1 , m ) B ( n , 1 ) 两点,过 A AC x 轴于点 C ,过 B BD x 轴于点 D

(1)求 m n 的值及反比例函数的解析式;

(2)请问:在直线 y = x + 2 上是否存在点 P ,使得 S ΔPAC = S ΔPBD ?若存在,求出点 P 的坐标;若不存在,请说明理由.

如图, 在正方形 ABCD 中, E F 分别为 AD CD 边上的点, BE AF 交于点 O ,且 AE = DF

(1) 求证: ΔABE ΔDAF

(2) 若 BO = 4 OE = 2 ,求正方形 ABCD 的面积 .

学校要组织去春游,小陈用50元负责购买小组所需的两种食品,买第一种食品共花去了30元,剩余的钱还要买第二种食品,已知第二种食品的单价为6元 / 件,问:小陈最多能买第二种食品多少件?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号