(1)求值 cos
(2)如图∆AOB中 点P在直线AB上且满足的值(6分 )
(本题12分)根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间,
,
,
,
,
进行分组,得到频率分布直方图如图.
(1)求直方图中的值;
(2)计算一年中空气质量为良的天数;
(3)某环保部门准备在一年内随机到该城市考察两次空气质量,求两次考察空气质量都为良的概率(结果用分数表示).
(本题12分)定义在R上的函数,已知
在
上有最小值3。
(1)求的单调区间;
(2)求在
上的最大值。
(本题12分)已知某种从太空带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,假定某次实验种子发芽则称该次实验是成功的,如果种子没有发芽,则称该次实验是失败的.
(1) 第一小组做了三次实验,求实验成功的平均次数;
(2) 第二小组连续进行实验,求实验首次成功时所需的实验次数的期望;
(3)两个小组分别进行2次试验,求至少有2次实验成功的概率.
(本大题满分14分)
函数与
的图象有公共点
,且它们的图象在该点处的切线相同。记
。
(Ⅰ)求的表达式,并求
在
上的值域;
(Ⅱ)设,函数
,
。若对于任意
,总存在
,使得
,求实数
的取值范围。
(本大题共13分)
已知函数是定义在R的奇函数,当
时,
.
(1)求的表达式;
(2)讨论函数在区间
上的单调性;
(3)设是函数
在区间
上的导函数,问是否存在实数
,满足
并且使
在区间
上的值域为
,若存在,求出
的值;若不存在,请说明理由。