(本小题满分14分)
如图,在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点.
(1)求证:EF∥平面CB1D1;
(2)求证:平面CAA1C1⊥平面CB1D1.
如图,已知二面角α—AB—β的大小为120º,PC⊥α于C,PD⊥β于D,且PC=2,PD=3.
(1)求异面直线AB与CD所成角的大小;
(2)求点P到直线AB的距离.
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.
(1)求GH长的取值范围;
(2)当GH取得最小值时,求证:EH与FG共面;并求出此时EH与FG的交点P到直线的距离.
如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.
(1)求证:平面EFGH;
(2)求证:四边形EFGH是矩形.
如图,正方体ABCD—A1B1C1D1中,E为AB中点,F为正方形BCC1B1的中心.
(1)求直线EF与平面ABCD所成角的正切值;
(2)求异面直线A1C与EF所成角的余弦值.
已知定义在R上的函数f(x)=的周期为
,且对一切x
R,都有f(x)
;
(1)求函数f(x)的表达式;
(2)若g(x)=f(),求函数g(x)的单调增区间;