已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为,且过点.(I)求椭圆C的方程;(II)直线分别切椭圆C与圆(其中3<R<5)于A、B两点,求|AB| 的最大值.
等差数列是递增数列,前n项和为,且成等比数列,.求数列的通项公式.
如图,在长方体ABCD-A1B1C1D1中,已知AB=AA1=a,BC=a,M是AD的中点。 (Ⅰ)求证:AD∥平面A1BC; (Ⅱ)求证:平面A1MC⊥平面A1BD1; (Ⅲ)求点A到平面A1MC的距离。
(本题满分13分)已知数列中,点在函数的图像上,(1)求,(2)若,求.
(本题满分13分)已知函数 (1)当时,求函数的单调递增区间;(2)当时,函数的值域是,求的值
(本题满分12分).如图:平面平面,是正方形,矩形,且,是的中点。 (1)求证平面平面;(2)求四面体的体积。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号