游客
题文

已知焦点在x轴上,中心在坐标原点的椭圆C的离心率为,且过点.
(I)求椭圆C的方程;
(II)直线分别切椭圆C与圆(其中3<R<5)于A、B两点,求|AB|   的最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

.(本小题12 分)如图,在四棱锥P-ABCD中,侧面PAD是正三角形,且与底面ABCD垂直,底面ABCD为正方形,E、F分别为AB、PC的中点.
①求证:EF⊥平面PCD;
②求平面PCB与平面PCD的夹角的余弦值.

.(本小题12 分)
有一个箱子内放有3个红球、1个白球、1个黄球,现从箱子里任意取球,每次只取一个,取后不放回.
①求前两次先后取到一个红球和一个白球的概率;
②若取得红球则停止取球,求取球次数的分布列及期望.

(本小题12分)
已知向量,设函数.
①求函数的最小正周期及在上的最大值;
②已知的角ABC所对的边分别为abcAB为锐角,
,又,求abc的值.


(本小题满分14分)
已知定义在上的两个函数图象在点处的切线的斜率为
(1)求的解析式;
(2)试求实数k的最大值,使得对任意恒成立;
(3)若
求证:

双曲线的左、右焦点分别为为坐标原点,点在双曲线的右支上,点在双曲线左准线上,
(Ⅰ)求双曲线的离心率
(Ⅱ)若此双曲线过,求双曲线的方程;
(Ⅲ)在(Ⅱ)的条件下,分别是双曲线的虚轴端点(轴正半轴上),过的直线交双曲线于点,求直线的方程。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号