如图,在长方体ABCD-A1B1C1D1中,已知AB=AA1=a,BC=a,M是AD的中点。
(Ⅰ)求证:AD∥平面A1BC;
(Ⅱ)求证:平面A1MC⊥平面A1BD1;
(Ⅲ)求点A到平面A1MC的距离。
(本小题共14分)设椭圆M:(a>b>0)的离心率为
,长轴长为
,设过右焦点F倾斜角为
的直线交椭圆M于A,B两点。
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证| AB | =;
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C, D,求四边形ABCD面积的最小值。
(本小题满分12分)
已知一个圆截y轴所得的弦长为2,被x轴分成的两段弧长的比为3:1.
(1)设圆心,求实数
、
满足的关系式;
(2)当圆心到直线的距离最小时,求圆的方程.
如图,在四棱锥中,底面
为菱形,
,
,
,
为
的中点,
为
的中点
(1)证明:直线;
(2)求异面直线与
所成角的大小;
(3)求点到平面
的距离.
某选手在电视抢答赛中答对每道题的概率都是,答错每道题的概率都是
,答对一道题积1分,答错一道题积
分,答完
道题后的总积分记为
.
(1)答完2道题后,求同时满足且
的概率;
(2)答完5道题后,求同时满足且
的概率;
(12分)设直线与圆
交于A、B两点,O为坐标原点,已知A点的坐标为
.(Ⅰ)当原点O到直线
的距离为
时,求直线
方程;(Ⅱ)当
时,求直线
的方程。