如图,设是单位圆上一点,一个动点从点
出发,沿圆周按逆时针方向匀速旋转,12秒旋转一周.
秒时,动点到达点
,
秒时动点到达点
.设
,其纵坐标满足
.
(1)求点的坐标,并求
;
(2)若,求
的取值范围.
如下的三个图中,右图是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).(1)在正视图下面,按照画三视图的要求画出该多面体的俯视图;
(2)按照给出的尺寸,求该多面体的体积;(3)在所给直观图中连结,证明:
∥面EFG.
设函数,其中
(1) 求
的最大值;(2)在
中,
分别是角
的对边,且f(A)=2,a=,b+c=3,求b,c的值
为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下:5,6,7,8,9,10.把这6名学生的得分看成一个总体.(1)求该总体的平均数; (2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
如图, 为数轴的原点, 为数轴上三点, 为线段 上的动点,设 表示 与原点的距离, 表示 到 距离4倍与 道 距离的6倍的和.
(1)将
表示成
的函数;
(2)要使
的值不超过70,
应该在什么范围内取值?
已知曲线
:
(
为参数),
:
(
为参数)。
(1)化
,
的方程为普通方程,并说明它们分别表示什么曲线;
(2)若
上的点
对应的参数为
,
为上的动点,求
中点
到直线
(
为参数)距离的最小值.