为了检验“喜欢玩手机游戏与认为作业多”是否有关系,某班主任对班级的30名学生进行了调查,得到一个2×2列联表:
|
认为作业多 |
认为作业不多 |
合计 |
喜欢玩手机游戏 |
18 |
2 |
|
不喜欢玩手机游戏 |
|
6 |
|
合计 |
|
|
30 |
(Ⅰ)请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程);
(Ⅱ)能否在犯错误的概率不超过0.005的前提下认为“喜欢玩手机游戏”与“认为作业多”有关系?
(Ⅲ)若从不喜欢玩手机游戏的人中随机抽取3人,则至少2人认为作业不多的概率是多少?
已知函数在点
处的切线方程为
.
(1)求、
的值;
(2)当时,
恒成立,求实数
的取值范围;
(3)证明:当,且
时,
.
已知数列的前
项和为
,且
,对任意
,都有
.
(1)求数列的通项公式;
(2)若数列满足
,求数列
的前
项和
.
如图,在五面体中,四边形
是边长为
的正方形,
平面
,
,
,
,
.
(1)求证:平面
;
(2)求直线与平面
所成角的正切值.
一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取个作为样本,称出它们的重量(单位:克),重量分组区间为
,
,
,
,由此得到样本的重量频率分布直方图,如图
(1)求的值;
(2)根据样本数据,试估计盒子中小球重量的平均值;
(注:设样本数据第组的频率为
,第
组区间的中点值为
,则样本数据的平均值为
.)
(3)从盒子中随机抽取个小球,其中重量在
内的小球个数为
,求
的分布列和数学期望.
如图,在中,
是边
的中点,且
,
.
(1)求的值;
(2)求的值.