如图,在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,E、F分别为PC、BD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.
(1)求证:EF∥平面PAD;
(2)求证:直线CD⊥平面PAD
(3)求证:面PAD⊥平面PCD.
如图,在三棱柱中,侧面
为菱形,且
,
,
是
的中点.
(1)求证:平面平面
;
(2)求证:∥平面
.
设函数.
(1)求的最小正周期和值域;
(2)在锐角△中,角
的对边分别为
,若
且
,
,求
和
.
在平面直角坐标系中,已知点
在圆
内,动直线
过点
且交圆
于
两点,若△ABC的面积的最大值为
,则实数
的取值范围为.
设,
且
,其中当
为偶数时,
;当
为奇数时,
.
(1)证明:当,
时,
;
(2)记,求
的值.
甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.