已知中心在原点,焦点在轴上的椭圆
的离心率为
,且经过点
,过点
的直线
与椭圆
相交于不同的两点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存直线,满足
?若存在,求出直线
的方程;若不存在,请说明理由
(本小题满分12分)设A(x1,y1),B(x2,y2)是函数f(x)=的图象上任意两点,且
,已知点M的横坐标为
.
求证:M点的纵坐标为定值;
若Sn=f(∈N*,且n≥2,求Sn;
已知an=,其中n∈N*.
Tn为数列{an}的前n项和,若Tn<λ(Sn+1+1)对一切n∈N*都成立,试求λ的取值范围.
(本小题满分12分)设{an}是公比为 q的等比数列,且a1,a3,a2成等差数列.
(1)求q的值;
(2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
(本小题满分12分)若数列满足前
项之和
且
,
(1)求数列的通项公式
(2)证明:是等差数列
(3)求的前
项和
.
(本小题满分12分)一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应具有的面积,问应如何设计十字型宽
及长
,才能使其外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.
已知a>0,b>0,m>0,n>0,求证:am+n+bm+n ≥ ambn+anbm.