在一种智力有奖竞猜游戏中,每个参加者可以回答两个问题(题1和题2),且对两个问题可以按自己选择的顺序进行作答,但是只有答对了第一个问题之后才能回答第二个问题。假设:答对题(
),就得到奖金
元,且答对题
的概率为
(
),并且两次作答不会相互影响.
(I)当元,
,
元,
时,某人选择先回答题1,设获得奖金为
,求
的分布列和
;
(II)若,
,试问:选择先回答哪个问题时可能得到的奖金更多?
(本小题满分12分)
已知椭圆中心在原点,焦点在y轴上,焦距为4,离心率为.
(I)求椭圆方程;
(II)设椭圆在y轴的正半轴上的焦点为M,又点A和点B在椭圆上,且M分有向线段所成的比为2,求线段AB所在直线的方程.
(本小题满分12分)
已知函数
(1)若是定义域上的单调函数,求
的取值范围;
(2)若在定义域上有两个极值点
、
,证明:
(本小题满分12分)
已知椭圆的离心率为
,右焦点为(
,0),斜率为1的直线
与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为
.
(1)求椭圆G的方程;
(2)求的面积.
(本小题满分12分)
甲打靶射击,有4发子弹,其中有一发是空弹(“空弹”即只有弹体没有弹头的子弹).
(1)如果甲只射击次,求在这一枪出现空弹的概率;
(2)如果甲共射击次,求在这三枪中出现空弹的概率;
(3)如果在靶上画一个边长为的等边
,甲射手用实弹瞄准了三角形
区域随机射击,且弹孔都落在三角形
内。求弹孔与
三个顶点的距离都大于1的概率(忽略弹孔大小).
(本小题满分12分)
等比数列的各项均为正数,且
(1)求数列的通项公式.
(2)设 ,求数列
的前n项和
.